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•
D

oE
 M

IC
S O

ffice supported SN
L

 w
ork  on 

solvers and parallelization for the N
IM

R
O

D
 

project 

•
W

ork at L
L

N
L

 for D
O

E
 under C

ontract 
W

7405-E
N

G
-48

•
C

om
puter tim

e provided by N
E

R
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L

L
N

L
, and U
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ustin
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ST
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A
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T
he com

putationally intensive physics kernel is w
ritten so as to run w

ithout m
odification on single processors or any platform

 
that supports a m

essage-passing style of program
m

ing. T
his includes w

orkstations, traditional vector supercom
puters, and 

essentially all current-generation m
assively parallel m

achines. In this poster, w
e describe how

 the N
IM

R
O

D
 kernel is 

structured to enable efficient parallelization and highlight its perform
ance on several parallel m

achines including the new
 C

ray 
T

3E
 at N

E
R

S
C

. N
IM

R
O

D
 represents the poloidal sim

ulation plane as a collection of adjoining grid blocks; the toroidal 
discretization is pseudo-spectral. W

ithin a single poloidal block the grid is topologically regular to enable the usual 2-D
 stencil 

operations to be perform
ed efficiently. B

locks join each other in such a w
ay that individual grid lines are continuous across 

block boundaries. W
ithin these constraints, quite general geom

etries can be gridded, and parallelization is achieved by 
assigning one or m

ore blocks (w
ith their associated toroidal m

odes) to each processor. In parallel, the only interprocessor 
com

m
unication that is then required is to exchange values for block-edge or block-corner grid points shared by other 

processors. F
or general block connectivity, this operation requires irregular, unstructured interprocessor com

m
unication. W

e 
describe our m

ethod of pre-com
puting the com

m
unication pattern and then exchanging values asynchronously, w

hich enables 
this block-connection operation to execute efficiently and scalably on any num

ber of processors. N
IM

R
O

D
 uses im

plicit 
tim

estepping to m
odel long-tim

escale events and thus requires a robust iterative solver. T
o date, an explicit tim

e-stepping 
routine and an iterative solver using conjugate gradient techniques have been im

plem
ented and tested in parallel for 

N
IM

R
O

D
. T

he iterative m
ethod uses sim

ple diagonal (Jacobi) scaling as a m
atrix preconditioner. A

 second m
ethod (currently 

under parallel developm
ent) directly inverts the portion of the m

atrix residing on each block as a preconditioning step. B
oth 

iterative solvers perform
 their com

putations on a block-w
ise basis and thus w

ork in parallel using the block-connection 
form

alism
 described above. W

e present tim
ings that illustrate the perform

ance and convergence of both techniques as a 
function of (1) the num

ber of blocks used to grid the poloidal plane and (2) the num
ber of processors used. T

he tim
ings have 

been run on the T
3D

 at LLN
L, T

3E
’s at N

E
R

S
C

 and U
T

 A
ustin, and the C

90 at N
E

R
S

C
.�



O
utline

•
T

he N
IM

R
O

D
 C

ode D
evelopm

ent Project
–

Physics K
ernel

–
G

rid and Finite E
lem

ents

–
G

raphical U
ser Interface

•
Parallel Processing C

onsiderations

•
Parallel Processing--results

•
Future
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N
im

rod W
eb Pages

Project C
om

m
unication is B

ased on
W

eb Pages
C

onference C
alls

M
eetings (every 3 m

onths)
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E
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T
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C
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C
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R
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ernel
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Im
plicit Field E
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C

old plasm
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L
ow

 frequency   ⇒ 
  Ignore displacem

ent current

T
im

e differencing, sum
 over species:

A
 useful expression:
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's law
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Im
plicit Field E

quation (cont.)

E

Im
pedance tensor,

:

C
om

bine w
ith M

axw
ell ⇒

Im
plicit field equation
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M
ust invert operator

C
an invert related sym

m
etric system

:

S
A

W
here

is sym
m

etric positive definite “sem
i-im

plicit” operator

Poloidal Spatial discretization by finite elem
ents

C
G

 m
atrix inversion for sym

m
etric system

Parallel Processing focused on C
G

 system

SU
M

M
A

R
Y



N
im

rod G
rid

•
Spectral in T

oroidal D
irection 

•
U

nstructured B
locks of Structured 

Q
uadrilaterals in Poloidal Plane

•
E

ach U
nstructured B

lock m
ay be a 

Single T
riangle (Patching of N

on-
C

onform
ing B

locks)

•
O

uter B
oundary can conform

 to R
eal 

M
achine G

eom
etry

•
N

early Flux Surface C
onform

ing w
ithin 

Separatrix

•
Singularity at m

agnetic axis
–

O
verlying Q

uadrilateral G
rid (1st try)

–
T

riangle E
lem

ents (Pie-slices) (2nd try)



O
verlying Q

uadrilateral G
rid led to 

unphysical results at corners

O
verlying Q

uadrilateral G
rid 

near M
agnetic A

xis (A
void Singularity)

Nimrod Grid



T
riangle B

lock Patch appears to fix 
problem

Nimrod Grid



Patching T
riangles also 

A
llow

s for V
ariation in G

rid 
R

esolution (to be im
plem

ented)



N
IM

R
O

D
 G

U
I

•
W

ritten in tcl/tk

•
C

ontrols interaction betw
een user and N

IM
R

O
D

–
Problem

 setup, D
ynam

ical integration, R
untim

e 
dianostics

•
C

ontrols interaction betw
een N

IM
R

O
D

 and

–
other user codes, pre/post processors



G
U

I C
onfiguration



N
IM

R
O

D
 G

U
I



Preprocessor C
ontrol





ST
E

PS of PA
R

A
L

L
E

L
 C

O
D

E
 

D
E

V
E

L
O

PM
E

N
T

•
C

ode design to avoid bottle necks

–
B

lock dom
ain decom

position of 2D
 toroidal m

esh

–
B

locks seam
 together

–
B

locks or M
ultiple blocks assigned to processors

–
FFT

’s in third dim
ension restricted to block

–
C

om
m

unication betw
een blocks via M

essage Passing Interface (M
PI)

•
Single Processor O

ptim
ization

–
see “Parallelizing C

ode for R
eal A

pplications on the T
3D

,” A
.E

. K
oniges and 

K
.R

. L
ind, C

om
puters in Physics 9, 399 (1995)

•
M

ultiple Processor O
ptim

ization

–
overlap com

m
unication and com

putation

•
Iterative Solver D

esign Issues



IN
H

E
R

E
N

T
 PA

R
A

L
L

E
L

ISM
 

in N
IM

R
O

D

•
E

ach processor ow
ns 1 or m

ore “blocks” and their 
associated “seam

s”.

•
C

om
putations can be done on each block 

independently.

•
O

nly connection/com
m

unication w
ith other 

processors is via “seam
s”



N
IM

R
O

D
 Parallel C

oding C
hoices

•
M

essage-passing parallelism
 w

ith F90/M
P

•
F90 provides dynam

ic m
em

ory, data structures

•
M

PI provides portability to any m
achine w

ith a 
single-processor F90 com

piler

•
M

PI allow
s irregular, asynchronous 

com
m

unication

•
Sam

e code w
ill run on w

orkstation, C
ray C

90, or 
parallel platform

s: 
–

C
ray T

3D
/E

, IB
M

 SP2

–
W

orkstation C
lusters

•
Future: benchm

ark vs. loop parallel (D
E

C
 cluster)



G
rid Structure of N

IM
R

O
D

•
N

IM
R

O
D

 grid is a general collection of joined 
sub-blocks m

apped to the poloidal plane.

•
E

dge points of adjacent blocks join exactly.



Sub-blocking w
ith associated seam

s

1-d seam
s

seam
 pts

im
age pts

m
ulti-block grid

E
ach edge point has 

“im
age” points in other 

blocks/seam
s.



FE
 integration stencil for block interior 
and across block and/or processor 

boundaries

•
If 2 adjacent blocks are on different processors, a data exchange is 

needed to com
plete the integration.

Interior

A
cross boundaries



Parallel D
esign

•
A

ssignm
ent of blocks to processors  (load-

balancing)

•
Setup of data structures for parallel seam

ing.

•
K

nit seam
s betw

een blocks.

–
used in explicit tim

estepper

–
used in m

atrix-vector m
ultiply of C

G
-solver

•
D

ot-products for C
G

-solver



Serial Seam
 C

onnection

1) C
opy from

 block-edge grid points to seam
s

2) L
oop over im

ages of each seam
 point, sum

 
im

age values to block-edge grid points

3) A
pply external boundary conditions.



Parallel Seam
 C

onnection

SE
R

IA
L

 V
E

R
SIO

N
: 1) C

opy from
 block-edge grid points to seam

s

2) L
oop over im

ages of each seam
 point, sum

 im
age values to block-edge 

grid points

3) A
pply external boundary conditions.

PA
R

A
L

L
E

L
 V

E
R

SIO
N

: 1) Send m
y seam

 data to neighboring 
processors.

2) For seam
 points w

here I ow
n both im

age pairs, sum
 im

age values to m
y 

block-edge grid points.

3) R
eceive incom

ing im
age data from

 other processors sum
 it to m

y 
block-edge grid points.

4) A
pply external boundary conditions.

5) C
opy from

 m
y block-edge grid points to m

y seam
s.



A
ttributes of Parallel Seam

 
C

onnection routine

•
U

ses asynchronous com
m

unication in irregular pattern of 
connectivity betw

een processors.

•
O

verlaps com
m

unication and com
putation (steps 2-4).

•
Pre-com

putes data structures to optim
ally pack/unpack 

m
essages being exchanged w

ith other processors.

•
Fast !

–
Seam

 com
m

unication is only sm
all fraction of block 

com
putation tim

e.



T
im

ing R
esults for Parallel Seam

 
C

onnection on T
3E

•
1.02 m

illion grid cells, 174 blocks, 51200 seam
 

points, 3 values/grid-cell

•
C

PU
 seconds for 1 seam

-operation:

P
rocs

1
2

5
10

20
30

T
im

e
0.64

0.25
0.12

0.081
0.033

0.024

• Scales roughly linearly w
ith size of grid and num

ber 

  of processors



T
im

ing R
esults for 

E
xplicit N

im
rod T

3D
 C

alculation

•
C

PU
 seconds for 200 tim

esteps on the T
3D

 show
s 

excellent scalability as problem
 size increases. 

(sam
e real tim

e as 50 im
plicit tim

e steps)

B
locks/C

ell
1 P

E
2 P

E
s

4 P
E

s
8 P

E
s

16 P
E

s
32 P

E
s

1peC
90

4/400
94.6

47.3
24.2

12.5
16/1600

381.3
192.5

95.2
48.4

49.7
64/6400

1497.9
759

390.5
101.3

50.2
198.7

256/25,600
1531.8

790.8
400.3

206.2
1024/102,400

B
locks are 10X

10, C
ells are poloidal cells



T
im

ing R
esults for 

E
xplicit N

im
rod T

3E
 C

alculation

•
C

PU
 seconds for 200 tim

esteps on the T
3E

 show
s 

excellent scalability as problem
 size increases. 

(sam
e param

eters as previous table for T
3D

)

B
locks/C

ell
1 P

E
2 P

E
s

4 P
E

s
8 P

E
s

16 P
E

s
32 P

E
s

1peC
90

4/400
28.8

14.2
7.58

12.5
16/1600

111.0
56.8

29.2
14.8

8.1
49.7

64/6400
112.1

58.3
30.8

16.0
198.7

256/25,600
117.4

62.3
1024/102,400

238.8



T
im

ing R
esults for 

Im
plicit N

im
rod T

3D
 C

alculation

•
C

G
 solver w

ith diagonal preconditioning

•
50 tim

esteps, roughly 30-40 C
G

 iterations per step
–

tim
e proportional to iterations

•
Preconditioning m

ethods for C
G

 solver require 
m

ore study
B

locks/C
ell

1 P
E

2 P
E

s
4 P

E
s

8 P
E

s
16 P

E
s

32 P
E

s
N

-iter
4/400

216.3
114

57.4
2170

16/1600
870.1

419.8
216.6

110.5
60.2

1949
64/6400

2939
1454.8

743.5
336.3

192.1
104.5

1553
256/25,600

2948.2
1579.1

791.1
397.2

1565
1024/102,400

1378



T
im

ing R
esults for 

Im
plicit N

im
rod T

3E
 C

alculation

•
C

G
 solver w

ith diagonal preconditioning

•
50 tim

esteps, roughly 30-40 C
G

 iterations per step
–

tim
e proportional to iterations

•
Preconditioning m

ethods for C
G

 solver require 
m

ore study
B

locks/C
ell

1 P
E

2 P
E

s
4 P

E
s

8 P
E

s
16 P

E
s

32 P
E

s
1peC

90
4/400

68.2
35.5

19.0
55.9

16/1600
261.8

131.1
67.8

35.6
20.3

205.7
64/6400

229.4
120.4

61.6
34.8

678.1
256/25,600

242.8
125.0

1024/102,400
449.7



Perform
ance R

esults Show
 

N
early Ideal Speed-up for E

xplicit C
ase

(even for fixed problem
 size)







Scaled Speed-up 
C

om
parison of T

3E
/D

•
Scaled speed-up is 
speedup/problem

 size

•
T

3E
 is roughly a 

factor of 4 faster
–

2X
 processor speed

–
chaining

–
cache effects

•
Scalability is 
virtually linear for 
both m

achines
N

u
m

b
er o

f P
ro

cesso
rs



Parallel C
onclusions

•
B

lockw
ise-design of N

IM
R

O
D

 enables rapid m
essage-passing 

parallelization.

•
E

xplicit and diagonal-preconditioned C
G

 solver run w
ell in parallel 

•
T

3E
 out-perform

s T
3D

, but both perform
 w

ell

–
(C

ache, Processor speed)

–
T

exas M
achine vs. N

E
R

SC
? (problem

 w
ith stream

s?)

•
 F90: great language

–
terrible com

pilers  in general

–
G

ood on T
3E

, but libraries still m
issing 

–
A

cceptable on T
3D

, but perform
ance tools need im

provem
ent

–
does it produce fast code ?? (open question)



Future Parallel W
ork

•
Im

plem
ent 2nd N

IM
R

O
D

 C
G

 solver (block-invert 
preconditioner) in parallel (alm

ost com
plete)

•
T

est convergence and perform
ance of solvers as a 

function of num
ber-of-blocks, num

ber-of-
processors 

•
T

ry new
 iterative solvers

•
O

ptim
ize code perform

ance


